1. OLD QUESTION PAPERS:

CodeNo:134BD

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech IIYear IISemester Examinations, December-2019 FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE,IT)

Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, bas sub questions.

R16

Max. Marks: 75

(25Marks)

PART-A

1.a)	Define Non-deterministic Finite Automata.	[2]
b)	What is the mathematical model of finite automata?	[3]
c)	What are the Applications of the Pumping Lemma?	[2]
d)	What are the Decision Properties of Regular Languages?	[3]
e)	Define context free grammar.	[2]
f)	Define Push down Automaton.	[3]
g)	Define Chomsky Normal Form.	[2]
h)	What is Restricted Turing Machines?	[3]
i)	Define NP-complete problem.	[2]
j)	Give examples for undecidable problems.	[3]

PART-B

2.	Design a DFA which accepts set of all strings which are divisible by5for binary alphabet. [1						
	OR						
3.	Illustrate an example to explain the process used to convert non- deterministic au	Illustrate an example to explain the process used to convert non- deterministic automata to					
	deterministic automata?	[10]					
4.	Convert regular expression (01^*+1) to finite automata.	[10]					
	OR						
5. a)	Prove that regular set $L = \{1^{p/p} \text{ is a prime}\}$ is not regular.						
b)	Explain about Pumping Lemma.	[5+5]					
6.	Construct a PDA that accepts the language $L = \{WCW^R W \in (a+b)^* \}$	[10]					
	OR						
7. a)	Explain about Ambiguity in Grammars and Languages with example.						
b)	Discuss in detail about left most and right most derivation tree with example.	[10					
8. De	esign a Turing machine over $\Sigma = \{a, b\}$ to accept the language $L = \{WW^R W \in (a, b)^+\}$.[10]					
	OR						
9.a)	Construct PDA from the following CFG						

1

b)	S→ aAA A→aS bS a Explain Closure Properties of Context-Free Languages.	[10]
10.a) b)	Explain Decision Properties of Context-Free Languages. Explain the concepts of Undecidable Problems about Turing Machines. OR	[4+6]
11.a) b)	Discuss in detail about P and NP problems. Explain about Post's Correspondence Problem with an example.	[4+6]

---00000----

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSIT YHYDERABAD **B.Tech IIYear IISemester Examinations, December-2018** FORMAL LANGUAGES AND AUTOMATATHEORY (Computer Science and Engineering)

Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) Define DFA. [2] Design FA which accepts s set of all strings endingwith00. [3] b) Define Left linear Grammar. c) [2] Give the regular expression for the language all string over alphabet {0,1} **d**) Containing at least two 0's. [3] What is ambiguity in CFG? e) [2] Write the context free grammar for the language $L = \{a^n b^{2n}/n \ge 1\}$ f) [3] Give Instantaneous description ID of Turing Machine. [2] g) DefineType0Grammar. h) [3] List any2 NP Hard Problems. i) [2] i) Define Turing reducibility. [3]

PART-B

50Marks

2 a) Convert the following NFA with \in -moves to DFA shown in figure.

Max. Marks:75

(25Marks)

b) Minimize the following DFA shown in figure.

[5+5]

1. Check whether the following two Finite Automaton's are equivalent or not? Finite Automaton (FA)1(figure3):

	Figure:6	
b)	Construct FA for the following regular expressions $(0+1)*(1+00)(0+1)*$.	[5+5]
6.a)	Convert the following grammar to Chomsky Normal Form $S \rightarrow ABA$ $A \rightarrow aA \mid C$ $B \rightarrow bB \mid C$ And simplify the grammar	
b)	Write and explain closure properties of Context Free Languages.	[5+5]
- /	OR	[]
7. a)	State the Pumping Lemma for Context Free Languages.	
b)	Design Push down Automata for the language $L = \{a^n b^{2n} n \ge 1\}$.	[5+5]
8.a) b)	Design Turing Machine for the Language $L=\{a^nb^nc^n/n\geq 1\}$ List the Closure properties of recursive Languages. OR	[6+4]
9.a) b)	Design Turing Machine to compute the function n! Design TM for performing proper subtraction of two numbers.	[5+5]
10.a) b)	Briefly write about Universal Turning Machine (UTM). What do you mean by NP Complete? List any 6 NP Complete Problems.	[4+6]
11.a) b)	Discuss about turing Reducibility. Write about: i) Post Correspondence Problem	[2 + 7]
	n) Haiting problem of TM.	[3+/]

FLAT(CS3	101PC)						
	Code I	No: 114AG					R1	3
	JAV	WAHARLAL N B.Tech	EHRU T II Year	ECHNOLO	GICAL UN Examinatio	IVERSI ons, May	FY HYDERABA - 2017	D
		FORM	IAL-LAN (Com	GUAGES AN puter Science	D AUTOM	ATA THE ering)	ORY	A
	Time:	3 Hours			i /	e trade	Max. Mark	s: 75
	Note:	This question pa Part A is compu Part B consists Each question c	aper conta Ilsory wh of 5 Ui arries 10	ains two parts ich carries 25 nits. Answer marks and ma	A and B. marks. Ans any one fu ay have a, b.	wer all qu ill questio , c as sub	uestions in Part A on from each un questions.	it.
				PARI	- A		: 26	26
	1 a)	Dofino Tronsitio	n Tabla			··· · · · · · · · · · · · · · · · · ·	(25 M	arks)
	b) c) d) e)	Explain the diff Construct CFG Explain Leftmo Construct Define A	Terence be to genera st Deriva	etween DFA a te strings with tion with an e $L = \{a$ an exa	nd NFA. any number xample. ^m b ^m c ⁿ m, a umple.	er of 1's. n≥ <u>1}</u>		
	g) h) i) j)	Explain a Write a short no List the propert Define Context	ote on Re ies of typ -sensitive	cursive langua be-3 grammar. e grammar.	ages.		[2 [3 [2 [3 [2 [3]	
				PAR	Г-В		M	arks)
	b)	number of 0's f Check whether	ollowed I the follow	by any numbe wing two FSN	r of 1's foll 1's are equi	owed by a valent.	iny number of 2's	5. 5+5]
		M1	0	1	M2	0	1	
		A	В	D	→P	(R)	R	
			A	C	Q	R	P	
		С	D	В	R	P	Q	
			С	A	_			
	3.a) b)	Define Moore a Design FA to divisible by 3.	accept s	y machines w tring with 'a	R ith example ' and 'b' s	such that	the number of a	's are 5+5]
	4.a)	Construct the le	eft linear	grammar for	the language	e (0+1)*0	0(0+1)*.	· ,
	<u>b)</u>	Apply pumping regular	y lemma 1	tor the langua	ge L={a''/n	is prime}	and prove that in [5+5]
				0	R			

5. Design a FA for the following Languages

a) (0*1*)*
b) (0+1)*111*
c) (0*11*+101).

6.a) Find the GNF equivalent to the following $S \rightarrow AA \mid a$ $A \rightarrow SS \mid b$

11.a) Discuss about universal turing Machine.

b) Define post's correspondence problem and show that it is undecidable.

---00000----

b) Convert the following grammar to a PDA that accepts the language by empty stack

[3+3+4]

[5+5]

2. ASSIGNMENT QUESTIONS:

MODULE-1:

Questions	BT	CO's
1. a) Draw the block diagram of Finite Automata and explain each component	L6	CO1
b) Write any four differences between DFA and NFA?		
2. Construct DFA that recognizes the language $L(M)=\{W/W \text{ is in } \{a, b c\}^* \text{ and } W$	L3	CO1
contains the pattern abac }		
3. Design a Moore machine for a binary input sequence such that if it has a substring	L6	CO1
101, the machine output A, if the input has substring 110, it outputs B otherwise it		
outputs C.		
4. Convert the given NFA with epsilon to NFA without epsilon.	L2	CO1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
5. Convert the following Mealy machine into equivalent Moore machine.	L2	CO1
$\begin{array}{c} a/1 \\ \hline \\ q_1 \\ \hline \\ b/0 \\ \hline \\ \\ b/1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		

MODULE-II:

Questions	BT	CO's
1. Minimize the following Finite Automata.	L3	CO2

Image: the set of the following is the fol	FLAT(CS3101PC)		
2. Construct NFA for the following i) $0+10^{*}+01^{*}0$ ii) $(0+1)^{*}(01+110)$ L3 CO2 3. Using Pumping Lemma prove that the language L={a ^b b'/n>0} is not regular. L3 CO2 4. Derive regular expression for the following DFA using Arden's Theorem. L3 CO2 4. Derive regular expression for the following DFA using Arden's Theorem. L3 CO2 5. Construct regular grammar from regular expression 0°(1(0+1))°. L3 CO2 MODULE-III: Questions BT CO 's 1. Construct a PDA for the following L = {a ^b cb ³ⁿ /n ≥ 1} over alphabet {a, b, L3 CO3 c). 2. Construct a PDA that accepts the language generated by the following L3 CO3 CO3 grammar. S → aB, B → bA/b, A → aB. Show an 1D for the string abab for the PDA generated. L1 CO3 3. State the following grammar is ambiguous. L1 CO3 S->AB aaB A>a Aa B->b L1 CO3 B->b L1 CO3 CO3 CO3	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		
3. Using Pumping Lemma prove that the language L={a*b*/n>0} is not regular. L3 CO2 4. Derive regular expression for the following DFA using Arden's Theorem. L3 CO2	2. Construct NFA for the following i) 0+10*+01*0 ii) (0+1)*(01+110)	L3	CO2
4. Derive regular expression for the following DFA using Arden's Theorem. L.3 CO2 Image: the system of the following DFA using Arden's Theorem. L.3 CO2 Image: the system of the following DFA using Arden's Theorem. L.3 CO2 Image: the system of the following of the system of the following grammar. S = AB, B = bA/b, A = AB. Show an ID for the string abab for the following grammar is ambiguous. L1 CO3 S = SAB aaB A = a Aa Aa Aa B = >b A a) Obtain a CFG to generate unequal no.s of a's and b's. L2,L3 CO3	3. Using Pumping Lemma prove that the language $L=\{a^nb^n/n>0\}$ is not regular.	L3	CO2
Image: transmission of the point of the	4. Derive regular expression for the following DFA using Arden's Theorem.	L3	CO2
5. Construct regular grammar from regular expression $0^{*}(1(0+1))^{*}$.L3CO2MODULE-III:QuestionsBTCO's1. Construct a PDA for the following L = $\{a^{n}cb^{2n}/n \ge 1\}$ over alphabet $\{a, b, L3$ CO3c}.2. Construct a PDA that accepts the language generated by the following grammar. S \rightarrow aB, B \rightarrow bA/b, A \rightarrow aB. Show an ID for the string abab for the PDA generated.L3CO33. State the following grammar is ambiguous.L1CO3S->AB aaB A->a Aa B->bL1CO34. a) Obtain a CFG to generate unequal no.s of a's and b's.L2,L3CO3	q1 a q2 a a a a a a a a a a a a a		
MODULE-III:QuestionsBTCO's1. Construct a PDA for the following $L = \{a^n cb^{2n}/n \ge 1\}$ over alphabet $\{a, b, c\}$.L3CO3c}.2. Construct a PDA that accepts the language generated by the following grammar. S \rightarrow aB, B \rightarrow bA/b, A \rightarrow aB. Show an ID for the string abab for the PDA generated.L3CO33. State the following grammar is ambiguous.L1CO3S->AB aaBA->a AaB->bA->a AaB->bL2,L3CO3	5. Construct regular grammar from regular expression $0^*(1(0+1))^*$.	L3	CO2
QuestionsBTCO's1. Construct a PDA for the following L = $\{a^n cb^{2n}/n \ge 1\}$ over alphabet $\{a, b, c\}$.L3CO3c}.Construct a PDA that accepts the language generated by the following grammar. S \rightarrow aB, B \rightarrow bA/b, A \rightarrow aB. Show an ID for the string abab for the PDA generated.L3CO33. State the following grammar is ambiguous.L1CO3S->AB aaBA->a AaB->bA->a AaB->bL1CO34. a) Obtain a CFG to generate unequal no.s of a's and b's.L2,L3CO3	MODULE-III:		
1. Construct a PDA for the following $L = \{a^n cb^{2n}/n \ge 1\}$ over alphabet $\{a, b, c\}$.L3CO32. Construct a PDA that accepts the language generated by the following grammar. $S \rightarrow aB$, $B \rightarrow bA/b$, $A \rightarrow aB$. Show an ID for the string abab for the PDA generated.L3CO33. State the following grammar is ambiguous.L1CO3S->AB aaBA->a AaB->bB->bL1CO34. a) Obtain a CFG to generate unequal no.s of a's and b's.L2,L3CO3	Questions	BT	CO's
2. Construct a PDA that accepts the language generated by the following grammar. $S \rightarrow aB$, $B \rightarrow bA/b$, $A \rightarrow aB$. Show an ID for the string abab for the PDA generated.L3CO33. State the following grammar is ambiguous.L1CO3S->AB aaB A->a Aa B->bL1CO34. a) Obtain a CFG to generate unequal no.s of a's and b's.L2,L3CO3	1. Construct a PDA for the following $L = \{a^n cb^{2n}/n \ge 1\}$ over alphabet $\{a, b, c\}$.	L3	CO3
3. State the following grammar is ambiguous. L1 CO3 S->AB aaB A->a Aa L1 CO3 B->b L1 CO3 L1 CO3 4. a) Obtain a CFG to generate unequal no.s of a's and b's. L2,L3 CO3	2. Construct a PDA that accepts the language generated by the following grammar. $S \rightarrow aB$, $B \rightarrow bA/b$, $A \rightarrow aB$. Show an ID for the string abab for the PDA generated.	L3	CO3
S->AB aaB A->a Aa B->b 4. a) Obtain a CFG to generate unequal no.s of a's and b's. L2,L3	3. State the following grammar is ambiguous.	L1	CO3
4. a) Obtain a CFG to generate unequal no.s of a's and b's.L2,L3CO3	S->AB aaB A->a Aa B->b		
	4. a) Obtain a CFG to generate unequal no.s of a's and b's.	L2,L3	CO3

b) Define and distinguish regular grammar and CFG?		
5. Convert the following grammar from CFG to PDA.	L2	CO3
S->AB aaB		
A->a Aa		
B->b		

MODULE-IV:

Questions	BT	CO's
1. Convert the given CFG to CNF	L2	CO4
$S \rightarrow aSa bSb a b$		
2. Convert the given CFG to GNF	L2	CO4
S-> ABA		
A->aA ε		
B-> bB ε		
3. Design a Turing Machine to accept $L=\{1^n 2^n 3^n n \ge 1\}$	L6	CO4
4. a) Define Turing machine and its model	- L1,L2	CO4
b) Explain the differences between PDA and T M?		
5. Design a TM to accept L={ $WW^R W \in (0+1)^*$ }	L6	CO4

MODULE-V:

	Questions					CO's
1)	1) Does the following PCP problem have a solution?					CO5
	i	List A	List B			
	1	b	bbb			
	2	babbb	ba			
	3	ba	а			
				1		
2)	What is	s NP- hard ar	L1	CO5		
3)	3) Explain UTM?					CO5
4)	Write 1	notes on Chor	msky hierarchy?		L6	CO5

FLAT(CS3101PC)			
5) Explain the types of Turing Machine?	L2	CO5	
			10